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System Dynamics 1
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Abstract

This paper describes a new spatial operator algebra for the dynamics of general{topology

rigid multibody systems. Spatial operators allow a concise and systematic formulation of the

dynamical equations of motion of multibody systems and the development of e�cient computational

algorithms. Equations of motion are developed for progressively more complex systems: serial

chains, topological trees, and closed{loop systems. New operator factorizations and expressions

for the mass matrix and its inverse are derived and used to obtain e�cient, spatially recursive

computational algorithms. The algorithms can be easily recon�gured in response to changes in

the constraints and the topology of constituent bodies. Thus, they are particularly suited for

time{varying multibody systems. References are provided for extensions to exible multibody

systems. Spatially recursive algorithms, based on the sequential �ltering and smoothing methods

encountered in optimal estimation theory, provide the computational infrastructure to mechanize

the spatial operators.

Introduction

There are two major current challenges in multibody system dynamics: achieving com-

putational e�ciency for increasingly complex systems; and retaining algorithmic e�ciency while

accounting for possible event-dependent changes to the constraints and topology of the constituent

bodies. These challenges occur for example in highly complex and interactive spacecraft and in

space robotic systems which require that the dynamics algorithms be quickly recon�gured in re-

sponse to con�guration changes without sacri�cing computational e�ciency.

In recent years, there has been signi�cant progress in the formulation of the equations of

motion and on the development of e�cient dynamics algorithms for multibody systems. A large
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part of this work, [1]{[6], has focused on the development of recursive computational algorithms

for the dynamics of serial rigid multibody systems. References [5, 7] describe recursive forward

dynamics algorithms for tree topology rigid multibody systems. References [8, 9] contain recursive

algorithms speci�c to closed topology rigid multibody systems consisting of multiple robot manipu-

lators grasping a rigid object. References [10, 11] describe recursive algorithms for general topology

rigid multibody systems.

The spatial operator algebra [8, 9] arose from a recognition of the close parallels between

the structure of the equations of motion for serial chain dynamics and those encountered in the area

of optimal estimation theory [12]. These parallels naturally led to the introduction of spatial oper-

ators to obtain a concise formulation of the equations of motion of multibody systems. The spatial

operators have been used to obtain new operator factorizations and expressions for the mass matrix

and its inverse. These operator expressions make it possible to recognize high-level mathematical

patterns associated with the mass matrix which the detailed algorithms do not reveal. Therefore,

the number of symbols that the analyst has to see is reduced signi�cantly. In addition, the spa-

tial operators are mechanized by very e�cient spatially recursive computational algorithms whose

complexity depends only linearly on the number of degrees of freedom (dofs). These algorithms

closely resemble the algorithms used for recursive �ltering and smoothing in the Kalman �ltering

and estimation problems. There is the reassuring presence of such familiar concepts as Riccati

equations and Kalman gains. This makes it easier to mechanize the dynamics algorithms and to

monitor their numerical stability and robustness. Much of the experience gained over many years

of research in estimation theory can now be used to solve multibody system dynamics problems.

In this paper, the spatial operator algebra is advanced as a new systematic procedure for

concisely formulating the equations of motion and deriving e�cient spatially recursive dynamics

algorithms for general topology rigid multibody systems. Spatial operator formulations of the

dynamics of serial chain, tree and closed chain topology multibody systems are developed in a

progressive sequence. It is seen that the spatial operator formulation of the dynamics for serial

and tree topology systems are identical in form. Consequently, such results as the operator factor-

ization and inversion of the mass matrix for serial chains are directly applicable to tree topology

systems. Moreover, the recursive computational algorithms for serial chains extend with only minor

modi�cations to tree topology systems.

Closed topology systems are modeled as consisting of primary and secondary tree-topology

subsystems along with additional kinematical closure constraints within and between them. The

primary system represents the major part of the system whose topology and constituent bodies do

not change with time. The secondary system is much smaller in most applications, and represents
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the part of the system whose topology and constituent bodies do change with time.

A recursive computational algorithm is then developed for closed{chain systems. This algo-

rithm contains separate steps for the dynamics of the primary and secondary systems using recursive

algorithms for tree{topology systems, plus additional steps to handle the closure constraints. A

signi�cant feature of these algorithms is that only relatively small and localized changes are needed

for recon�guration in response to changes in either the topology, the constraints or the constituent

bodies of the system. The overall computational complexity of the algorithm stays linear in the

number of degrees of freedom in the system. In addition, there is a linear dependency (in the

absence of kinematical singularities) on the number of closed loops in the system.

Extensions of the spatial operator algebra and the computational algorithms to exible

multibody system dynamics are discussed in reference [13].

6-Dimensional Spatial Notation

Coordinate{free 6-dimensional spatial notation used throughout this paper. Given the linear

and angular velocities v and !, the linear force F , and moment N in R3 at a point on a body, the

(inertial) spatial velocity V , (inertial) spatial acceleration � and the spatial force f in R6 are:

V
4
=

0
@ !

v

1
A ; �

4
= _V ; f

4
=

0
@ N

F

1
A

Here \ _ " implies the time derivative in an inertial frame. The rigid body transformation operator

�(x; y) 2 R6�6 for two points x and y is:

�(lx;y) = �(x; y)
4
=

0
@ I ~lx;y

0 I

1
A

where lx;y 2 R
3 is the vector joining the two points x and y. ~lx;y is the cross{product matrix

associated with lx:y which acts on a vector to produce the cross{product of lx;y with the vector.

�(x; y) and ��(x; y) transform spatial forces and spatial velocities respectively between the two

body{�xed points x and y on a rigid body. The spatial inertia MO 2 R
6�6 of a rigid body at at a

point O on the body is

M(O)
4
= =

0
@ J (O) m~p

�m~p mI

1
A

where p 2 R
3 is the vector from O to the center of mass of the body, m is the mass of the body,

and J (O) 2 R
3�3 is the inertia tensors for the body about O. See [14] for more discussion on the

properties and use of the spatial notation.
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Serial Rigid Multibody Systems

This is the simplest case of a rigid multibody system. The system consists of n rigid bodies

connected together by multiple dof hinges. The bodies are numbered 1 through n from tip to base.

The term outboard (inboard) body refers to a body on the path towards the tip (base).

The generalized coordinates for the serial chain are the collection of the hinge con�guration

parameters. It is assumed that the kth hinge possesses rp(k) con�guration degrees of freedom which

are parameterized by the vector of con�guration variables �(k) 2 Rrp (k) and that its rv(k) (� rp(k))

motion dofs are parameterized by the generalized velocity vector �(k) 2 R
rv (k). The kinematical

equations which relate _�(k) to �(k) depend on the speci�c nature of the kth hinge. It is assumed

for notational convenience that all the hinge constraints are homogeneous (i.e., catastatic). H(k)

is de�ned such that H�(k) 2 R6�rv (k) is the hinge map matrix for the kth hinge. Its columns span

the space of permissible relative spatial velocities across the hinge. The number of overall motion

dofs for the serial chain are given by N
4
=
P
n

k=1 rv(k) for the chain. The state of the multibody

system is de�ned by the collection of [�(:); �(:)] pairs for all the hinges, and is assumed known.

Since each body is rigid, it su�ces to develop the equations of motion for a body about

a single reference point on the body, which is chosen here as the inboard hinge location Ok for

the kth body (see Fig. ). With V (k) 2 R
6 denoting the (inertial) spatial velocity, �(k) 2 R

6

the (inertial) spatial acceleration, f(k) 2 R
6 the spatial interaction force and T (k) 2 R

rv (k) the

generalized hinge force about Ok for the k
th body, the following Newton{Euler recursive equations

describe the equations of motion for the serial chain:

8>>>>>>>>>><
>>>>>>>>>>:

V (n+ 1) = 0; �(n+ 1) = 0

for k = n � � � 1

V (k) = ��(k + 1; k)V (k + 1) +H�(k)�(k)

�(k) = ��(k + 1; k)�(k + 1) +H�(k) _�(k) + a(k)

end loop

(0.1)

8>>>>>>>>>><
>>>>>>>>>>:

f(0) = 0

for k = 1 � � �n

f(k) = �(k + 1; k)f(k � 1) +M(k)�(k) + b(k)

T (k) = H(k)f(k)

end loop
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THIS IS THE new links FIGURE

Figure 1: Illustration of bodies and joints in a serial rigid multibody system
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where the velocity dependent Coriolis and centrifugal acceleration term a(k) 2 R6 is,

a(k)
4
= _��(k + 1; k)V (k + 1) + _H�(k)�(k) (0.2)

The velocity dependent gyroscopic force term b(k) 2 R6 is

b(k)
4
= _M(k)V (k) � _�(p(k))M(k)V (k)

�(k; k � 1) 2 R6�6 denotes the transformation operator from Ok�1 to Ok. For more details on the

derivation of these equations of motion, see [9, 14].

The simplifying assumption is made that the tip force f(0) is zero. Base mobility can

easily be handled by attaching a full motion 6{dof hinge between the physical base and the inertial

frame. For the inverse dynamics problem, the hinge accelerations _� are known, and equation (0.1)

represents an O(N ) computation involving a base{to{tip recursion to compute the velocities and

accelerations, followed by a tip{to{base recursion to compute the hinge forces.

The equations of motion equation (0.1) can be expressed more concisely using spatial op-

erators. In this notation, the V (k)'s, �(k)'s etc are viewed as components of vectors V 2 R
6n ,

� 2 R6n etc. Then, equation (0.1) can be written in the following compact form:

V = E
�
�
V +H��

� = E
�
��+H� _� + a

f = E�f +M�+ b (0.3)

T = Hf

where,

E�
4
=

0
BBBBBBBBBB@

0 0 0 0 0

�(2; 1) 0 : : : 0 0

0 �(3; 2) : : : 0 0
...

...
. . .

...
...

0 0 : : : �(n; n� 1) 0

1
CCCCCCCCCCA

2 R
6n�6n (0.4)

M
4
=

0
BBBBBBB@

M(1) 0 : : : 0

0 M(2) : : : 0
...

...
. . .

...

0 0 : : : M(n)

1
CCCCCCCA
2 R

6n�6n; H
4
=

0
BBBBBBB@

H(1) 0 : : : 0

0 H(2) : : : 0
...

...
. . .

...

0 0 : : : H(n)

1
CCCCCCCA
2 R

N�6n

(0.5)
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However, since E� is nilpotent ( En
�
= 0),

�
4
= (I � E�)

�1 = I + E� + E
2
�
+ � � � + E

n�1
�

=

0
BBBBBBB@

I 0 : : : 0

�(2; 1) I : : : 0
...

...
. . .

...

�(n; 1) �(n; 2) : : : I

1
CCCCCCCA
2 R

6n�6n

(0.6)

where,

�(i; j)
4
= �(i; i � 1) � � � �(j + 1; j)for i > j

Thus, equation (0.3) can be reexpressed as,

V = ��H��

� = ��(H� _� + a) (0.7)

f = �(M� + b) = �M��H� _� + �(M��a+ b)

T = Hf = H�M��H� _� +H�(M��a+ b)

= M _� + C; where M
4
= H�M��H�; and C

4
= H�(M��a+ b)

M 2 R
N�N is the mass matrix for the serial chain and C 2 R

N contains the velocity dependent

Coriolis, centrifugal and gyroscopic hinge forces. In the terminology of Kane's method [15], � are

the generalized speeds and the elements of ��H� are the partial (spatial) velocities. The operator

expression M = H�M��H� is denoted the Newton{Euler Operator Factorization of the mass

matrix.

In terms of the rigid body transformation operator from the tip to the �rst hinge by �(1; 0),

the tip spatial velocity, V (0), is given by V (0) = ��(1; 0)V (1). Thus,

V (0) = B���H��; where B
4
=

0
BBBBBBB@

�(1; 0)

0
...

0

1
CCCCCCCA
2 R

6n�6

Thus, the Jacobian matrix J 2 R6�N which maps � to the tip velocity V (0) is

J = B���H�; and we have V (0) = J� (0.8)

E�, �, H, andM are the �rst spatial operators encountered. Recursive dynamical algorithms

can be derived easily by using the state transition properties [8] of the elements of spatial operators
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such as E�, � etc.. For instance, given a vector y, the evaluation of the matrix{vector product �y does

not require an O(n2) matrix-vector product computation, and not even the explicit computation

of the elements of �. Rather, this product can be evaluated using an O(n) recursive algorithm

involving only the elements of E� and y. This is precisely the correspondence between the concise

operator based high{level description of the equations of motion in equation (0.7) and the recursive

algorithmic description in equation (0.1).

Spatially recursive O(N ) forward dynamics algorithms for serial chains have been developed

in [3] based on the recognition of the close parallels between the structure of the multibody dynamics

equations and the equations encountered in Kalman Filtering theory [16]. These parallels are used

to obtain a new (square) Innovations operator factorization of the mass matrixM and an operator

expression for its inverse, and form the basis for the recursive algorithms.

Tree Topology Systems

In this section, the dynamics of tree{topology rigid multibody systems are discussed. A tree

topology system is viewed here as a set of component serial chains (referred to as branches), coupled

together via hinges at their inboard terminal bodies. The total number of branches is denoted `.

The index for the branches ranges from 1 � � � `, and consistent with the body numbering scheme in

the previous section, the inboard branches are assigned indices larger than those for the outboard

ones. The inboard function {(k) is de�ned as the index of the direct predecessor branch, i.e., the

inboard branch to which the kth branch is directly connected. The jth branch is referred to as a

predecessor of the kth branch if it belongs on the unique path from the kth branch to the base,

i.e., if {p(k) = j for some integer p > 0, where {p(:) = { � { � � � � � {(:) denotes a p{times function

composition. Figure illustrates the decomposition of a tree system into branches as well as a

sample branch numbering scheme for the system.

The notation developed earlier for serial chains is used to describe the branches in the tree

system. A subscript serves to identify the speci�c branch in the system. Thus nj and Nj denote

the number of bodies and the number of motion dofs respectively, while Vj 2 R
6nj , andMj , E�j , �j

etc. in R6nj�6nj denote the spatial vector, spatial inertias etc. for the jth branch. A body/hinge

is identi�ed by the index of the branch it is on, plus its location within the branch. For instance,

the kj body is the kth body on the jth branch, and V (kj) (or Vj(k)) denotes the spatial velocity

of the the kth body of the jth branch at its inboard hinge location O(kj). The overall stacked

spatial velocity, acceleration etc. vectors for the tree are once again denoted V , �, f etc. with

V
4
= [V �1 � � � V �

`
]� 2 R

6n etc. The total number of bodies n, and the total number of motion dofs
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THIS IS THE TREE DECOMPOSITION FIGURE

Figure 2: Illustration of decomposition into branches for a tree system
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N for the tree multibody system are now given by

n
4
=

`X
j=1

nj and N
4
=

`X
j=1

Nj (0.9)

Note that when the jth branch is the direct predecessor of the kth branch, i.e., j = {(k), the hinge

connecting them is is regarded as the the nth
k
hinge (the last hinge) on the kth branch and describes

the attachment to body 1j on the jth branch. The transformation operator from the nth
k

hinge

to the 1th
j

hinge is denoted �(1j ; nk). The spatial operator E� 2 R
6n�6n for the tree system is

de�ned in terms of its block matrix elements below. For j; k 2 1 � � � `, the (j; k)th block element

E�(j; k) 2 R
6nj�6nk of E� is de�ned as follows:

E�(j; k) =

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

E�j for j = k

E�j;k
4
=

0
BBBBBBB@

0 � � � 0 �(1j ; nk)

0 � � � 0 0
... � � �

...
...

0 � � � 0 0

1
CCCCCCCA

for j = {(k), i.e. if j= k's di-
rect predecessor branch

0
for j 6= {(k), i.e. if j 6= k's
direct predecessor branch

(0.10)

In this paper 0 denotes a zero matrix whose dimension is apparent from the context. As a conse-

quence of the numbering scheme used here, for j < k, the jth branch cannot be a predecessor to the

kth branch and thus the (j; k)th block element, E�(j; k) = 0. Thus E� is a strictly lower triangular

matrix. The analogs of equation (0.3) are as follows:

V = E
�
�
V +H��

� = E
�
��+H� _� + a

f = E�f +M�+ b (0.11)

T = Hf

Once again (analogous to equation (0.6)), E� is nilpotent (En
�
= 0) and the operator � can be

de�ned as follows:

�
4
= (I � E�)

�1 = I + E� + E
2
� + � � � + E

n�1
�

(0.12)
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It is easy to verify that the (j; k)th block element �(j; k) 2 R6nj�6nk of � is given below:

�(j; k) =

8>>>>>>>>>><
>>>>>>>>>>:

�j
4
= (I � E�j)

�1 for j = k

�j;k if 9 p > 0 : j = {p(k); i.e., if j is a predecessor branch of k

0 if j 6= {p(k) 8 p > 0; i.e., if j is not a predecessor branch of k

(0.13)

where the components of the matrix �j;k are de�ned as

�j;k(m; l) = �(mj ; lk)
4
= �(mj;mj � 1)�(mj � 1;mj � 2) � � � �(lk + 1; lk)

for m 2 1 � � � nj and l 2 1 � � � nk. �(mj ; lk) is the transformation operator from hinge lk (on the

kth branch) to hinge mj (on the jth branch) and is a generalization of the transformation operator

�(i; j) in equation (0.6) for serial chains. It is formed by sequentially composing all the individual

transformation operators that lie on the unique path joining the two hinges. The numbering scheme

used here ensures that � will be a lower triangular matrix. The structure of the E� and � operators

for the example in Figure is given below:

E� =

0
BBBBBBBBBB@

E�1 0 0 0 0

0 E�2 0 0 0

0 0 E�3 0 0

E�4;1 E�4;2 0 E�4 0

0 0 E�5;3 E�5;4 E�5

1
CCCCCCCCCCA

; and � =

0
BBBBBBBBBB@

�1 0 0 0 0

0 �2 0 0 0

0 0 �3 0 0

�4;1 �4;2 0 �4 0

�5;1 �5;2 �5;3 �5;4 �5

1
CCCCCCCCCCA

The operator � has state transition properties analogous to the � for serial chains, and as a con-

sequence, it can be used for high{level and concise description and analysis of the dynamics of

tree topology systems (as in equation (0.14) below). However, from the computational perspective,

equations involving these operators can always be directly mapped into very e�cient and recursive

computational algorithms. From equation (0.11) and equation (0.12) it follows that,

V = ��H��

� = ��(H� _� + a) (0.14)

f = �(M� + b) = �M��H� _� + �(M��a+ b)

T = Hf = H�M��H� _� +H�(M��a+ b)

= M _� + C; where M
4
= H�M��H�; and C

4
= H�(M��a+ b)

M 2 R
N�N denotes the mass matrix for the tree system, and C 2 R

N is the vector of velocity

dependent nonlinear Coriolis type terms. While neither M nor C are typically available, their
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explicit computation is not required either for solving the forward dynamics of the system. Since

the complexity of the forward dynamics algorithm depends primarily on handling M and not C,

we assume here for simplicity that C is explicitly computed from the state information. De�ning

�T
4
= T � C, the forward dynamics then requires the solution of

M _� = �T (0.15)

for the hinge accelerations _�.

It is noteworthy that the spatial operator expressions for the mass matrixM and the Coriolis

vector C in equation (0.14) are identical to the corresponding ones for serial chains in equation (0.7).

Moreover, key properties of the operators remain une�ected. Thus, important operator results for

the alternative (square) Innovations factorization and the inversion of the mass matrix for serial

chain systems in [9] also hold for tree{topology systems. Indeed, with only minor extensions, even

the O(N ) recursive algorithms for the dynamics of serial chain systems extend directly to tree{

topology systems. The discussion of these operator results and algorithms is postponed until after

the dynamics of closed{chain systems have been discussed in the next section.

However, before proceeding to closed topology systems, an expression is derived for the tree-

topology Jacobian operator. Given nC points, denoted Ck's, on the tree, the Jacobian operator

J 2 R
6nC�N de�nes the mapping between � and V̂ , i.e., V̂ = J�, where V̂ 2 R

6nC denotes the

vector of spatial velocities at these points. If Ck is on body mj , then the spatial velocity at Ck is

given by

V̂ (k) = ��[O(mj); Ck]V (mj) (0.16)

with �(O(mj); Ck) denoting the rigid body transformation operator from Ck to the point O(mj).

With the block elements of B 2 R6n�6nC de�ned as

B(mj; k) =

8>>><
>>>:

�[O(mj); Ck] if Ck 2 m
th

j
body

0 otherwise

for k = 1 � � �nC (0.17)

it follows from equation (0.16) that

V̂ = B�V = B���H��; i.e., J = B���H� (0.18)

This gives an expression for the desired Jacobian operator that will be used below to deal with the

loop closure constraints for closed topology systems.

Closed Topology Systems
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This section describes equations of motion for closed topology multibody systems with

time{varying topologies, constraints and constituent bodies. The closed{chain system consists of:

(a) the primary tree-topology subsystem, consisting of the major part whose topology and con-

stituent bodies are the least time{variant.

(b) The secondary tree{topology subsystem, which is much smaller, and consists of the part whose

topology and constituent bodies do change from time to time.

(c) The set of closure constraints and/or boundary conditions between/within the primary and

secondary systems.

Note that the subsystems described above are in an order of increasing time{variation. As an exam-

ple, take the case of multiple robot manipulators interacting with each other and the environment

to perform complex tasks. In this context, the manipulators by themselves should be assigned to

the primary system since their internal structure does not vary with time. On the other hand, the

task objects and the tools vary from task to task and are assigned to the secondary system. The

closure constraints between the primary and secondary subsystems characterize those arising from

task related grasping, mating, tool operation etc., and belong to the last category.

This decomposition of the closed topology system is a departure from the more traditional

approach (see [10, 11]) of forming a spanning tree for the full system and computing the constraint

forces at the points of closure. In these latter approaches, even small changes in the original

system typically require whole new spanning trees for the system. This disallows any algorithmic

optimization, and the algorithms are also not amenable to coping with time{varying systems.

When the application system is \time{invariant", such as a spacecraft, there may be no secondary

subsystem at all, and in the absence of closed loops, the set of constraints will also be empty.

The equations of motion for tree topology systems derived in equation (0.15) will be used

to describe the dynamics of the tree components of both the primary and secondary systems, with

the subscripts \P" and \S" being used to identify the two subsystems. Thus the dynamics of the

tree part of the two systems are described by

�TP = HP�PMP�
�
P
H�
P
_�P =MP

_�P ; and �TS = HS�SMS�
�
S
H�
S
_�S =MS

_�S
(0.19)

MP and MS denote the mass matrices, �P and �S the motion dof parameter vectors, �TP and �TS

the bias{free internal hinge forces for the primary and secondary subsystems respectively.
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Collect together the internal loop points of closure with the points of closure coupling

the two systems, and denote their number by �P and �S for the primary and secondary systems

respectively. Let V̂P 2 R
6�P and V̂S 2 R

6�S denote the vectors of spatial velocities at these points of

closure for the two systems. Following the discussion leading up to equation (0.18), JP = B�
P
��
P
H�
P

and JS = B�
S
��
S
H�
S
are the Jacobians to these points of closure for the two systems respectively.

Thus V̂P = JP�P and V̂S = JS�S . The kinematical constraints due to the existence of internal

closed loops within the primary and secondary systems are characterized by constraint matrices

QP and QS and lead to kinematical constraint equations of the form:

QP V̂P = ÛP and QS V̂S = ÛS

The coupling together of the primary and secondary systems is characterized by the constraint

matrices Q̂P and Q̂S and leads to a kinematical constraint equation of the form:

Q̂P V̂P + Q̂S V̂S = ÛC

De�ne

AP
4
=

0
BBB@

Q̂P

QP

0

1
CCCA ; AS

4
=

0
BBB@

Q̂S

0

QS

1
CCCA ; and A

4
= [AP AS ]

The closure constraints can be collectively expressed as:

A

0
@ V̂P

V̂S

1
A = [AP AS ]

0
@ JP 0

0 JS

1
A
0
@ �P

�S

1
A = [APJP ASJS ]

0
@ �P

�S

1
A =

0
BBB@

ÛC

ÛP

ÛS

1
CCCA

4
= Û

(0.20)

It is assumed here onwards that [APJP ASJS ] is of full row rank, and its rank is NE. The overall

number of motion dofs of the closed chain system is given by NC

4
= N + NS � NE . While not

required for the purpose here, equation (0.20) can be used, whenever necessary, to �nd the NC

dimensional minimal set of generalized velocities for the system. Based on the principle of virtual

work, equation (0.20) implies that the closure constraint forces are
0
@ J�

P
A�
P

J�
S
A�
S

1
A f̂ (0.21)

for some f̂ 2 R
NE . Together, the dynamical equations of motion for the primary and secondary

systems equation (0.7) and equation (0.21), as well as the constraint equation in equation (0.20),

lead to the following equations of motion for the closed chain system follows:
0
BBB@

MP 0 J�
P
A�
P

0 MS J�
S
A�
S

APJP ASJS 0

1
CCCA

0
BBB@

_�P

_�S

f̂

1
CCCA =

0
BBB@

�TP

�TS

U

1
CCCA ; where U

4
=

_̂
U �

h
_(APJP ) _(ASJS)

i0@ VP

VS

1
A

(0.22)
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Premultiplication of both sides of the above equation by the matrix

0
BBB@

I 0 0

0 I 0

�APJPM
�1
P

�ASJSM
�1
S

I

1
CCCA

leads to
0
BBB@

MP 0 J�
P
A�
P

0 MS J�
S
A�
S

0 0 �[AP�PA
�
P
+AS�SA

�
S
]

1
CCCA

0
BBB@

_�P

_�S

f̂

1
CCCA =

0
BBB@

�TP

�TS

U � [APJPM
�1
P

�TP +ASJSM
�1
S

�TS ]

1
CCCA

(0.23)

where

�P
4
= JPM

�1
P
J�P ; and �S

4
= JSM

�1
S
J�S

Physically, �P 2 R
6�P �6�P and �S 2 R

6�S�6�S are the e�ective \admittances" of the primary and

secondary systems reected to the points of closure.

When there is no secondary system, the equations of motion in equation (0.22) are given

by 0
@ MP J�

P
A�
P

APJP 0

1
A
0
@ _�P

f̂

1
A =

0
@ �TP

U

1
A ; where U

4
=

_̂
U � _(APJP )VP

The corresponding form of equation (0.23) is given by:

=)

0
@ MP J�

P
A�
P

0 �AP�PA
�
P

1
A
0
@ _�P

f̂

1
A =

0
@ �TP

U �APJPM
�1
P

�TP

1
A (0.24)

Simpli�cations for some special cases types of closed chain systems are described below:

� When the hinge constraints coupling the primary and secondary systems are only on the

relative spatial velocity across the hinges coupling them together, an appropriate reordering

of the elements of V̂ will result in Q̂P = �Q̂S. Furthermore, if no relative motion is permitted

across the hinge, i.e., there is rigid rather than loose coupling, then in fact Q̂P = I and Q̂S = I.

When this feature holds for only some of the hinges, only the corresponding rows of QP and

QS have this special structure.

� When the secondary system has no internal actuators or source of generalized forces, then

TS = 0.

� If the secondary system is a free rigid body with no internal degrees of freedom, then the

motion generalized coordinates vector �S is of dimension 6 and is just the spatial velocity of

the body.
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Forward Dynamics of Closed Chain Systems

This section describes a recursive algorithm for solving the forward dynamics of closed chain

rigid multibody systems which does not require the explicit computation of the system mass matrix.

From the equations of motion for closed chain systems given by equation (0.23), the forward

dynamics problem can be solved by the following sequence of steps:

(A) Solve MP
_�
f

P
= �TP for _�

f

P
Solve MS

_�
f

S
= �TS for _�

f

S

(B) Compute �
f

P
= JP _�

f

P
Compute �

f

S
= JS _�

f

S

(C) Compute �P = JPM
�1
P
J�
P

Compute �S = JSM
�1
S
J�
S

(D) Solve [AP�PA
�
P
+AS�SA

�
S
]f̂ = (AP�

f

P
+AS�

f

S
)� U for f̂

(E) Solve MP
_��
P
= �J�

P
A�
P
f̂ for _��

P
Solve MS

_��
S
= �J�

S
A�
S
f̂ for _��

S

(F) _�P = _�
f

P
+ _��

P
_�S = _�

f

S
+ _��

S

The interpretation of each of the steps is as follows. STEP (A) solves for the \free" hinge

accelerations _�
f

P
and _�

f

S
of the primary and secondary systems assuming that there are no closure

constraints on the system. Note that this step is equivalent to computing the forward dynamics of

the primary/secondary tree{topology systems. STEP (B) computes the corresponding \free" tip

spatial accelerations �
f

P
and �

f

S
for the systems. STEP (C) computes the e�ective admittances of

the primary and secondary systems at the points of closure. In STEP (D), the constraint forces at

the points of closure are computed, and they are used in STEP (E) to compute the \correction"

hinge accelerations _��
P

and _��
S
for the two systems. Combining the free and correction hinge

accelerations in STEP (F) gives the true hinge accelerations for the two systems.

It is now easy to see the use of the decomposition into primary and secondary systems

in the development of dynamics algorithms which are responsive and adaptable to time{varying

systems. The forward dynamics procedure above involves a sequence of decoupled steps for each

of the primary and secondary system dynamics, and one step in which they come together when

the constraint forces are computed. Being structurally time{invariant, it is possible to put in place
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optimized algorithms for the dynamics of the primary system. Changes in the secondary system,

which is typically of small dimension, e�ect only the relatively smaller number of computations

involving the steps in the right half column. Changes in the closure constraints only alters the

constraint matrix A, and thus only STEP D is a�ected, while the computations for the primary

and secondary systems remain una�ected. Thus, changes to the secondary system or the constraints

on the system require very modest changes to recon�gure the algorithm to respond to these changes.

Recursive algorithms for each of the above steps are now described. It follows from the

symmetry between the steps in the two columns that the recursive algorithms for the primary

system are directly applicable to the secondary system as well. Therefore, the explicit use of the

subscripts identifying the primary/secondary systems are dropped here onwards (except for STEP

(D)).

STEP (A) Solve M _�f = �T . (Forward Dynamics of a Tree Topology System )

Step (A) is equivalent to solving the forward dynamics of a tree topology system. Here, an

O(N ) recursive algorithm for this solution is developed. This algorithm is based on a new

factorization of the mass matrix M in terms of square factors. in contrast to the earlier non{

square factorization in equation (0.14). This square factorization is then used to obtain an

explicit expression for M�1.

The articulated body inertia matrix P is de�ned as the solution to the following equation:

M = P � E�[P � PH�(HPH�)�1HP ]E�� (0.25)

P is block diagonal and the elements on the diagonal (denoted P (kj)) can be obtained using

a recursive algorithm described in equation (.39) in Appendix A. Physically, P (kj) is the

articulated body inertia as seen at the kth
j

hinge, i.e., it is the e�ective inertia of all the links

outboard from the kth
j
hinge assuming that the hinge forces at all the outboard hinges are zero.

For the subsequent development, it is convenient to de�ne

D
4
= HPH�; G

4
= PH�D�1; K

4
= E�G

�
4
= GH; �

4
= I � �; E 

4
= E�� (0.26)

Note that D;G; � and � are all block diagonal. The structure of E is identical to that of E�

with its elements being given by

 (kj ; kj � 1)
4
= �(kj ; kj � 1)� (kj � 1)
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E is also nilpotent (En
 
= 0), and analogous to �,  is de�ned as

 
4
= (I � E )

�1 = I + E + E
2
 
+ � � � + E

n�1
 

(0.27)

The structure of  is very similar to that of � and it also possesses the state transition properties

which are used to develop recursive algorithms. �may be viewed as the transformation operator

for composite bodies (i.e., as if all the hinges are locked), while  is the transformation operator

for articulated bodies (i.e., as if all the hinge forces were zero). The following lemma yields a

square factorization of M.

Lemma 0.1 The mass matrix M has the following factorization:

M = [I +H�K]D[I +H�K]�; (0.28)

Proof: See Appendix B.

Note that the factor [I+H�K] is square and block lower triangular, while D is block diagonal.

Thus the factorization in equation (0.28) may be thought of as an explicit block LDU factor-

ization of the mass matrix. This factorization is also known as the innovations factorization

because of its relationship to the innovations approach to �ltering and prediction theory (see

[17]).

The following lemma gives the explicit form for the inverse of [I +H�K].

Lemma 0.2

[I +H�K]�1 = [I �H K] (0.29)

Proof: See Appendix B.

Combination of Lemma 0.1 and Lemma 0.2 leads to the following form for the inverse of the

mass matrix.

Lemma 0.3

M
�1 = [I �H K]�D�1[I �H K] (0.30)
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Note that the factor [I � H K] is square and block lower triangular, while D�1 is block

diagonal. Thus the factorization in equation (0.29) may be thought of as an explicit block

LDU factorization of the mass matrix inverse.

Thus,

_�f =M
�1 �T = [I �H K]�D�1[I �H K] �T (0.31)

The O(N ) recursive computation of the expression on the right is given in equation (.40) in

Appendix A.

STEP (B) Compute �f = J _�f

From equation (0.18), �f = B�~�f , where

~�f
4
= ��H� _�f (0.32)

However,

Lemma 0.4

(I �H K)H� = H (0.33)

Proof: See Appendix B.

Thus, use of equation (0.30) and the above lemma in equation (0.32),

~�f = ��H�[I �H K]�D�1[I �H K] �T =  �H�D�1[I �H K] �T

Compare this with equation (0.31) to see that ~�f can be evaluated as an intermediate quantity

in the O(N ) recursive algorithm for computing _�f described in STEP (A).

STEP (C) Compute � = JM�1J�

Use of equation (0.18) and equation (0.30) implies

� = f[I �H K]H�Bg�D�1f[I �H K]H�Bg

= B� �H�D�1H B = B�
B; where 

4
=  �H�D�1H (0.34)

19



Here equation (0.33) has been used to simplify the above expression. A recursive O(N ) pro-

cedure for the computation of 
 is given in equation (.43) in Appendix A. Note that without

the simpli�cation resulting from the use of equation (0.33), the computation of � would be an

O(N 3) process.

STEP (D) Solve [AP�A
�
P
+AS�SA

�
S
]f̂ = (AP�

f

P
+AS�

f

S
)� U for f̂

Now,

f̂ = [AP�A
�
P
+AS�SA

�
S
]�1[(AP�

f

P
+AS�

f

S
)� U ] (0.35)

In this form this step is of O(N 3
E
) complexity. However, when (AP�PA

�
P
) is invertible, there

is an alternative expression for f̂ . This is obtained by reexpressing equation (0.23) as:

0
BBB@

MP 0 J�
P
A�
P

0 MS J�
S
A�
S

0 ASJS �AP�PA
�
P

1
CCCA

0
BBB@

_�

_�S

f̂

1
CCCA =

0
BBB@

�TP

�TS

U �AP�
f

P

1
CCCA

Premultiply both sides by 0
BBB@

I 0 0

0 I JSA
�
S
(AP�PA

�
P
)�1

0 0 I

1
CCCA

to get

0
BBB@

MP 0 J�
P
A�
P

0 MS + J�
S
A�
S
(AP�A

�
P
)�1ASJS 0

0 ASJS �AP�PA
�
P

1
CCCA

0
BBB@

_�

_�S

f̂

1
CCCA =

0
BBB@

�TP

�TS + J�
S
A�
S
(AP�PA

�
P
)�1[U �AP�

f

P
]

U �AP�
f

P

1
CCCA

From the above equation it follows that

_�S = [MS + J�SA
�
S(AP�PA

�
P )
�1ASJS ]

�1[ �TS � J�SA
�
S(AP�A

�
P )
�1(AP�

f

P
� U)]

f̂ = (AP�A
�
P
)�1[(AP�

f

P
+ASJS _�S)� U ]

= (AP�PA
�
P )
�1[(AP�

f

P
+AS�S)� U ]; where �S = JS _�S

Note the similarity between the forms of equation (0.35) and the above equation for f̂ . The

computational cost of the above operation is a combination of the cost of inverting AP�PA
�
P
,
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and the O(N 3
S
) step of solving a square linear system of equations of size NS. The cost of

inverting AP�PA
�
P
depends on its structure: its sparsity reects the degree of coupling between

the closed loops in the system. The cost is typically much less than the worst case of O(N 3
E
).

In many application domains such as robotics, AP�PA
�
P
is in fact block diagonal and is thus

invertible in O(NE) steps [8]. In addition, for most applications NS � NE, and this new

formulation can lead to considerable computational savings.

The inverse of [AP�PA
�
P
+ AS�SA

�
S
] will not exist if [APJP ASJS ] is not of full rank, i.e.,

the con�guration is such that the number of motion dofs for the system have changed. It is

therefore necessary to reformulate the constraint equation equation (0.20) so as to preserve the

full rank property. Such changes of rank can occur at kinematically singular con�gurations.

STEP (E) Compute �� = �M�1J�A�f̂

From equation (0.30) and equation (0.18),

�� = �[I �H K]�D�1[I �H K]H�BA�f̂

Use of Lemma 0.4 in this leads to

�� = �[I �H K]�D�1H BA�f̂ (0.36)

The recursive O(N ) implementation of the above step is given in equation (.44) in Appendix

A.

The overall complexity of this spatially recursive forward dynamics algorithm ranges be-

tween O(N + NS) + O(N 3
E
) for the worst case and O(N + NS) + O(NE) + O(N 3

S
) in the best

case.

By treating the primary and secondary system as one overall system, which amounts to

de�ning the quantities  
4
= diag( P ;  S), H

4
= diag(HP ;HS) etc., and using the above results, for

U = 0 the overall closed topology forward dynamics algorithm can be restated in the following

form:

_� = [I �H K]�D�
1

2

h
I � b(A�A�)�1b�

i
D�

1

2 [I �H K] �T ; where b
4
= D�

1

2H BA�

(0.37)

Note that when there are no closed loops in the overall system, A = 0, and the middle term reduces

to I. Hence, the forward dynamics of tree topology systems in equation (0.31) are recovered.
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Conclusions

The algorithms developed here are suitable for multibody systems that have time{varying

topology as well as changing constituent bodies and constraints. For the sake of clarity, the focus

of much of the paper is on multibody systems with rigid links.

This paper describes the use of the spatial operator algebra to easily develop these algo-

rithms. Based on the rate of time{variation, a multibody system is partitioned into a primary

subsystem, a secondary subsystem and the set of closure constraints. Spatial operators are used to

develop operator factorizations and inversion of the mass matrix. These factorizations lead directly

to e�cient computational algorithms for the dynamics of the multibody system. The algorithm

consists of of parallel paths involving the tree{topology primary and secondary systems respectively.

The two paths come together at one point to compute the constraint forces. The algorithm can

be adapted to time{varying topology and changes in constraints or constituent bodies since only

localized and relatively easy modi�cations to the algorithm are required.

The algorithm does not require the computation of the mass matrix, and its computational

complexity is linear in the number of degrees of freedom, (NP +NS). In the absence of kinemat-

ical singularities, the algorithmic complexity also depends only linearly on the number of closure

constraint equations, NE.

Reference [13] describes extensions to exible multibody systems. The spatial operator

formulation for exible multibody systems is identical in form to the formulation for rigid multibody

systems described in this paper. The structure of the dynamics algorithms requires the addition of

only a few straightforward steps to handle body exibility.
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Appendix A: Recursive Computational Algorithms

Based on the special structure of �;  etc., it is possible to evaluate many of the dynamical

expressions in a recursive manner and we describe some recursive algorithms in this appendix. First

we de�ne some notational shorthand to simplify the description of these algorithm:

(nj + 1) =) 1{(j)

y(1j ; 0j)x(0j) =)
X

m2{�1(j)

y(1j ; nm)x(nm) (.38)

y(1j ; 0j)x(0j)y
�(1j ; 0j) =)

X
m2{�1(j)

y(1j ; nm)x(nm)y
�(1j ; nm)

where y(:; :) and x(:) stand for some appropriate arrays. Thus where ever in an algorithm, a term

with indices as in the left column appears, its meaning is actually given by the corresponding term

in the column on the right.

� A recursive method for the computation of the block diagonal elements of P as de�ned by

24
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equation (0.25) and the entries of D, G, K, E and � de�ned in equation (0.26) is given by:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for j = 1 � � � `8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

If {�1(j) = ;, then P (0j) = 0

for k = 1j � � �nj

P (k) =  (k; k � 1)P (k � 1) �(k; k � 1) +M(k)

D(k) = H(k)P (k)H�(k)

G(k) = P (k)H�(k)D�1(k)

�(k) = I �G(k)H(k)

 (k + 1; k) = �(k + 1; k)� (k)

K(k + 1; k) = �(k + 1; k)G(k)

end loop

end loop

(.39)

� The recursive computation of _�f = [I �H K]�D�1[I �H K] �T in equation (0.31) in STEP

(A) can be carried out via the O(N ) tree topology forward dynamics algorithm described

below. It also results in the computation of �f =  �D�1[I �H K] �T required in STEP (B)
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as an intermediate quantity.

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

for j = 1 � � � `8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

If {�1(j) = ;, then z(0j) = 0; �T (0j) = 0

for k = 1j � � �nj

z(k) =  (k; k � 1)z(k � 1) +K(k; k � 1) �T (k � 1)

�(k) = T (k)�H(k)z(k)

�(k) = D�1(k)�(k)

end loop

end loop

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

�f (n` + 1) = 0

for j = ` � � � 18>>>>>>>>>><
>>>>>>>>>>:

for k = nj � � � 1j

�f (k) =  �(k + 1; k)�f (k + 1) +H�(k)�(k)

_�f (k) = �(k)�K�(k + 1; k)�f (k + 1)

end loop

end loop

(.40)

� STEP (C) requires the computation of � = B�
B. In order to obtain a O(N ) recursive scheme

for the computation of 
 we �rst de�ne the matrix � as the one satisfying the equation:

H�D�1H = �� E
�
 �E (.41)

� as de�ned above is a block diagonal matrix and its elements can be computed recursively.

We now obtain the following decomposition of 
.

Lemma .5


 = �+ ~ ��+� ~ (.42)

Proof: See Appendix B.

Noting that ~ is strictly lower triangular, we can then recognize that � as nothing but the

diagonal elements of 
. We now present a recursive scheme to compute the block diagonal
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elements of � and of 
.

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�(n` + 1) = 0

for j = ` � � � 18>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

for k = nj � � � 1j

�(k) =  �(k + 1; k)�(k + 1) (k + 1; k) +H�(k)D�1(k)H(k)

8>>>>>>><
>>>>>>>:


(k; k) = �(k)

for m = k � 1 � � � 1j


(k;m) = 
�(m; k) = �(k;m+ 1) (m + 1;m)

end loop

end loop

end loop

The above recursion yields the elements 
j on the block diagonal of 
. Since 
 is symmetric,

the o�{diagonal elements satisfy 
j;l = 
�
l;j
, and can be computed from the diagonal elements

as follows. 
l;j for l 2 1 � � � (j � 1) can be obtained via the following recursive scheme:

(.43)

� The O(N ) recursive implementation of �� = �[I �H K]�D�1H BA�f̂ in equation (0.36) in
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STEP (E) is given below:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

De�ne x̂
4
= �BA�f̂

for j = 1 � � � `8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

If {�1(j) = ;, then z(0j) = 0; x̂(0j) = 0

for k = 1j � � �nj

z(k) =  (k; k � 1)z(k � 1) +K(k; k � 1)x̂(k � 1)

�(k) = �H(k)z(k)

�(k) = D�1(k)�(k)

end loop

end loop

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

��(n` + 1) = 0

for j = ` � � � 18>>>>>>>>>><
>>>>>>>>>>:

for k = nj � � � 1j

��(k) =  �(k + 1; k)��(k + 1) +H�(k)�(k)

_��(k) = �(k)�K�(k + 1; k)��(k + 1)

end loop

end loop

(.44)

Appendix B: Proofs of the Lemmas

In this appendix we give the proofs of the various lemmas. First we establish a few identities.

Lemma .6 P satis�es the equation

M = P � E PE
�
 (.45)

Proof: It is easy to verify from the de�nitions in equation (0.26) that

�P�� = 0 and thus �P = �P��

Thus we can rewrite equation (0.25) in the form

M = P � E�[I � PH�D�1H]PE�� = P � E��PE
�
� = P � E��P�

�
E� = P � E PE 
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Lemma .7 In the stacked notation we have that:

(a)

~ 
4
=  E = E  =  � I (.46)

(b)

 M � = P + ~ P + P ~ � (.47)

(c)

 �1� = I +KH�

� �1 = I + �KH (.48)

(d)

H M �H� = D (.49)

Proof:

(a) From equation (0.27) we have that E = I �  �1. Substituting this into equation (.46) gives

the result.

(b) Pre{ and post{multiplying equation (.45) by  and  � we have that

 M � = ( ~ + I)P ( ~ + I)� � ~ P ~ � = P + ~ P + P ~ �

(c) We have from equation (0.26) and equation (0.27) that

 �1 = I � E = I � E�� = (I � E�) + E�� = ��1 + E�GH = ��1 +KH (.50)

Pre and posy-multiplying this by � gives the result.

(d) From equation (0.26)

�PH� = PH� so that �PH� = 0 and thus E PH
� = 0

Pre{ and post{multiplying equation (.47) with H and H� respectively and using the above

fact in conjunction with equation (.46) yields the result.
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Proof of Lemma 0.1:

We have that

M = H�M��H� = H(� �1) M �(� �1)�H�

= H[I + �KH] M �[I + �KH]�H� = [I +H�K]H M �H�[I +H�K]�

= [I +H�K]D[I +H�K]�

We have used equation (.48) and equation (.49) above.

Proof of Lemma 0.2:

Using the operator identity in equation (.50) along with a standard matrix identity, it follows

that (I +AB)�1 = I �A(I +BA)�1B, we have that

[I +H�K]�1 = I �H[I + �KH]�1�K = I �H(� �1)�1�K = I �H K

We have used equation (.48) to simplify the above.

Proof of Lemma 0.4:

We have that

[I �H K]H� = H��H (KH�) = H��H ( �1�� I) = H 

We have used equation (.48) in the above for simpli�cation.

Proof of Lemma .5:

Using equation (.41) and equation (.46) we have that


 =  �H�D�1H =  �� � ~ �� ~ = �+ ~ ��+� ~ 
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